Distinção de Espécies e Castas de Formigas com a Técnica FTIR-PAS

Dourados – MS

2007
Thais Izida

Distinção de Espécies e Castas de Formigas com a Técnica FTIR-PAS

Monografia apresentada como Trabalho de Conclusão de Curso (TCC), do curso de Física da Universidade Estadual de Mato Grosso do Sul (UEMS), como requisito parcial para a obtenção do grau de licenciatura em Física. Orientador: Professor Dr. Sandro Marcio Lima, Co-orientador: Professor Dr. Willian Fernando Antonialli Junior.

Dourados – MS

2007
Dedico este trabalho e a conclusão do curso de Licenciatura em física à Deus que opera maravilhas na minha vida.
AGRADECIMENTOS

À Deus, meu Pai amado que me deu tudo o que tenho e me deu forças pra superar todos os desafios e ao Senhor Jesus por guiar os meus caminhos.

À todos os meus familiares por terem me incentivado em meus estudos, sobretudo meus pais, Gerson e Luzinete, meu irmão Fernando, e em especial minha tia Ilda Keiko e minha avó Yoshiko que me acolheram em sua casa durante toda a minha graduação.

Aos professores Dr. Sandro Marcio Lima, orientador deste trabalho e também de iniciação científica, Dr. Willian Fernando Antonialli Junior, co-orientador deste trabalho, Dr. Yzel Rondon Suares, que contribuiu na análise estatística realizada neste trabalho e ao Professor Dr. Luiz Humberto da Cunha Andrade que colaborou na realização tanto da iniciação científica quanto deste trabalho de conclusão de curso.

E a todos os meus amigos e colegas de sala que acompanharam toda a minha graduação me dando apoio e incentivo.
SUMÁRIO

Resumo...5

1. Introdução..6

2. Revisão de Literatura...7
 2.1 – Insetos Sociais..7
 2.2 – FTIR-PAS ...9

3. Materiais e Métodos...16
 3.1 – Material Biológico..16
 3.2 – FTIR-PAS ...17
 3.3 – Análise Discriminante...17

4. Resultados e Discussões...18
 4.1 – Distinção de Castas em Colônia de Formiga..18
 4.2 – Distinção de Espécies de Formigas...22

5. Conclusões ...24

6. Referências Bibliográficas ..25
RESUMO

Os hidrocarbonos cuticulares estão incluídos numa classe de compostos voláteis conhecidos como “feromônios de superfície”. Estes feromônios são substâncias químicas importantes para os insetos sociais pois permitem a comunicação intraespecífica (entre membros de uma mesma espécie), o reconhecimento de membros de diferentes castas em uma mesma colônia e também de membros de outras espécies. Isso ocorre porque os hidrocarbonos presentes no exoesqueleto de membros de diferentes castas de uma mesma colônia apresentam variações, que também existem entre membros de diferentes espécies.

A FTIR-PAS (“Fourier Transform-Infrared Photoacoustic Spectroscopy”) é uma técnica rápida e não destrutiva, e apresenta um grande potencial para fornecer informações sobre o espectro de absorção no infravermelho médio. Ela apresenta certas vantagens em relação a outras técnicas pois não requer preparação das amostras e é consideravelmente sensível.

Neste trabalho utilizou-se a técnica de FTIR-PAS como um método alternativo, combinado com a análise de função discriminante ou análise de variáveis canônicas, afim de avaliar os espectros de absorção no infravermelho médio de formigas das espécies Ectatomma vizottoi e Ectatomma brunneum, para distinção de espécies e castas dessas formigas. A análise foi feita através da observação do índice de hidrocarbonos da cutícula do abdômen das formigas. O índice de hidrocarbonos em rainhas mostrou-se maior que em operárias e machos de uma mesma colônia. Através das análises foi possível detectar que duas colônias da mesma espécie, bem como colônias de espécies diferentes, apresentam variação do índice de hidrocarbonos. Pode-se portanto, através destes resultados, reafirmar o potencial dessa técnica para analisar e distinguir pequenas diferenças químicas em sistemas biológicos.

Palavras chave: Espectroscopia Fotoacústica, Insetos Sociais, Hidrocarbonos.
1. Introdução

Este trabalho de conclusão de curso foi motivado pelos recentes artigos encontrados na literatura referentes a distinção de castas e sexo de uma mesma colônia de formiga, utilizando o método de Cromatografia Gasosa e Espectrometria de Massas (GC/MS) (Dietermann et al., 1992) para análise do nível de hidrocarbono cuticular de insetos sociais. Embora esse método seja muito confiável e forneça boas análises quantitativas, requer diversas etapas de preparação de amostra, e dependendo da amostra demora para apresentar os resultados. Assim, decidiu-se trabalhar com um método alternativo e já implantado no Centro Integrado de Análise e Monitoramento Ambiental (CInAM), a FTIR-PAS, para os estudos com as formigas, o que gerou esse trabalho de conclusão de curso.

Nas formigas, as espécies são frequentemente separadas pelas diferenças nas características morfológicas específicas para a reprodução, ou seja, rainhas e machos, ou pelas diferenças no número de cromossomos (Seifert, 1991). Portanto, abordagens alternativas são necessárias, sendo que métodos bioquímicos e técnicas moleculares podem superar as limitações de métodos morfológicos (Raboudi, 2005).

Neste trabalho de conclusão de curso, a técnica FTIR-PAS foi aplicada no abdômen de formigas das espécies *Ectatomma vizottoi* (E. vizottoi) e *Ectatomma brunneum* (E.
brunneum), para distinguir castas e espécies de formigas. Utilizou-se para a análise dos espectros de absorção no infravermelho o método estatístico de análise de função discriminante. Este estudo reforça o perfil multidisciplinar que o CInAM vem implantando nos últimos anos dentro da UEMS. O intuito foi mostrar o potencial da FTIR-PAS para a discriminação de espécies e castas de formigas e através dos resultados obtidos verificar se a técnica é aplicável, se possui vantagens sobre outras técnicas e se poderá ser utilizada com êxito em estudos posteriores utilizando também outras espécies de formigas.

2. Revisão de Literatura

2.1. Insetos Sociais

Indivíduos funcionalmente interdependentes, mesmo morfologicamente distintos, são considerados parte de uma organização social. As organizações sociais estão presentes em duas ordens de insetos: os Isoptera (cupins) e os Hymenoptera (abelhas, vespas e formigas). Um inseto social não pode existir fora da colônia, ou ser membro de outra colônia, a não ser aquela em que ele se desenvolveu. Alguns insetos sociais apresentam um certo grau de poliformismo no qual os diferentes tipos de indivíduos e que executam tarefas diferentes em uma colônia são chamados de castas. Tem-se como castas principais os machos que possuem a função de inseminação da rainha, as rainhas que produzem novos indivíduos, e as operárias que são responsáveis pela manutenção e conservação da colônia, podendo também haver uma casta de soldados. Há ainda algumas espécies que saqueiam outros formigueiros de espécies diferentes e criam como “escravas” as larvas e pupas retiradas. O que determina a casta de um indivíduo é um fenômeno de desenvolvimento controlado pela presença ou ausência de determinadas substâncias fornecidas por outros membros da colônia quando ele ainda se encontra em estágio imaturo, o sexo é determinado geneticamente, a distinção de rainha para operária, já que
ambas são fêmeas, é devida a alimentação na fase jovem. Geralmente uma colônia de formigas se abriga em um sistema de galerias no solo, na madeira, ou sob pedras. Existem exceções, como por exemplo, as formigas de correição tropicais, que ao contrário da maioria das formigas são nômades e não constroem abrigos fixos para suas colônias. As operárias assim como em abelhas ou vespas, são sempre fêmeas estéreis. Só possuem asas os machos e as rainhas (fêmeas reprodutivas) que se encontram no período nupcial, momento em que ocorre a cópula (Ruppert et al., 2005).

A comunicação em insetos sociais ocorre principalmente por meios químicos e táteis, onde atuam os hidrocarbonos cuticulares. Os hidrocarbonos cuticulares são conhecidos como "feromônios de superfície" e são importantes para insetos sociais, porque permitem o reconhecimento de co-específicos, parentes, ou mesmo membros de diferentes castas (Blomquist et al., 1998; Lenoir et al., 1999).

Em muitas espécies de insetos sociais, os hidrocarbonos cuticulares dos adultos variam com colônia e com a fisiologia ("oogenesis") (Blomquist et al., 1998; Lenoir et al., 1999). Estudos recentes têm mostrado que o hidrocarbono cuticular varia entre as castas de diferentes espécies de insetos sociais como, Melipona bicolor (Abdalla et al., 2003) e em Ectatomma vizottoi (Antoniali Júnior et al., 2007). Nas abelhas os hidrocarbonos cuticulares têm perfis, em parte, geneticamente determinados e eles diferem entre subfamílias, isso pode sugerir que os mesmos sejam utilizados pelas operárias como "assinaturas" para o reconhecimento da subfamília (Arnold et al., 2000).

As espécies de formigas utilizadas nesse trabalho, Ectatomma vizottoi (Almeida, 1987) e Ectatomma brunneum (Smith, 1858), apresentadas na figura 1, são formigas do grupo das Poneromorfas, pertencente à subfamília Ectatomminae (Bolton, 2003). As colônias dessas formigas podem variar de tamanho desde uma dezena de adultos até centenas de milhares. Como na maioria das formigas dessa subfamília esta é uma espécie
predadora, utiliza-se do ferrão bem desenvolvido para dominar sua presa, podendo também visitar nectários extraflorais (Caetano et al., 2002).

![Image of E. brunneum and E. vizottoi ants]

Figura 1. Operária da espécie *E. brunneum* e operária da espécie *E. vizottoi*.

2.2. FTIR-PAS

Espectroscopia é o termo usado para definir a ciência que estuda a interação da radiação eletromagnética com a matéria (Skoog et al., 2002). A espectroscopia fotoacústica ou PAS (“Photoacoustic Spectroscopy”) como é comumente chamada, é uma técnica que estuda a interação da radiação com a matéria através de um fenômeno conhecido como efeito fotoacústico. Esse efeito consiste na geração de um sinal acústico através da incidência de radiação modulada na superfície da amostra, conforme ilustrado na Figura 2.
Figura 2. célula Fotoacústica.

A energia absorvida periodicamente pela amostra se transforma parcial ou totalmente em pulsos de calor que provocam flutuações de pressão no gás, que são detectadas por um microfone acoplado à célula fotoacústica. São basicamente três os mecanismos através dos quais os pulsos de calor produzidos na amostra geram ondas acústicas: expansão térmica, flexão termoelástica e difusão de calor. Eles podem ou não ocorrer ao mesmo tempo, dependendo da amostra (Marquezini, 1990). A seguir tem-se uma breve explanação sobre cada um dos mecanismos:

i) **Expansão térmica** (Figura 3): como a radiação incidida na amostra é modulada, o aquecimento na mesma é periódico e faz com que sua temperatura média também oscile. Assim, a amostra se expande e se contrai periodicamente, de forma que o microfone funciona como um pistão vibratório, detectando as ondas acústicas no gás.

Figura 3. Expansão Térmica.
ii) Flexão termoelástica (Figura 4): surge devido à diferença de temperatura ao longo da espessura da amostra, pois a absorção decresce à medida que a luz penetra no material. Isso faz com que a expansão térmica seja diferente em diferentes pontos da amostra, o que provoca uma flexão também periódica que geram as ondas acústicas.

![Figura 4. Flexão Termoelástica](image)

iii) Difusão térmica (Figura 5): o pulso de calor produzido pela amostra é transmitido para o gás, que se expande periodicamente e gera a onda acústica.

![Figura 5. Difusão Térmica](image)

O efeito fotoacústico foi observado pela primeira vez em 1880 por Alexandre Graham Bell, em seus estudos sobre o “photofone” (Bell, 1880). Ele percebeu que incidindo luz solar modulada em um sólido dentro de uma célula, gerava no ar à sua volta sons audíveis que podiam ser amplificados e captados a partir de um tubo ligado à referida
célula (Kerr e Atwood, 1968). Em 1881 ele apresentou sua descoberta à Associação Americana para o Desenvolvimento da Ciência, nos seguintes termos: “a natureza dos raios que produzem efeitos sonoros em substâncias diferentes depende da natureza das substâncias que são expostas à radiação, e que os sons são em cada caso devido aos raios do espectro que são absorvidos pelo corpo”. Segundo sua interpretação, a intensidade do sinal fotoacústico dependia da quantidade de luz absorvida pelo material na célula, isto é, dependia do coeficiente de absorção do material.

No mesmo ano Graham Bell concordou com a afirmação do Lord Rayleigh, que sugeria que “a fonte primária do sinal fotoacústico em discos finos e flexíveis deveria ser devida à vibração mecânica do disco como consequência do aquecimento desigual do mesmo provocada pela iluminação intermitente” (Michaelian, 2003). A explicação dada por Mercadie e Preece, por outro lado, considerava que o sinal fotoacústico era causado pelo movimento vibratório do gás contido no tubo do “photofone”, principalmente da coluna de ar que estava diretamente em contato com a superfície aquecida, devido ao aquecimento periódico da amostra. Vale lembrar que nos experimentos feitos por Graham Bell o detector era o próprio ouvido e isto tornava difícil a obtenção de dados quantitativos, o que certamente contribuiu para que os experimentos envolvendo o efeito fotoacústico fossem interrompidos por um período de mais de 50 anos.

Com o advento do microfone o efeito fotoacústico voltou a despertar interesse, e em 1938, Viegorov começou a usar o referido fenômeno para estudar a absorção de luz por gases na região do infravermelho (Veingerov, 1938). Entre 1950 e 1970, os analisadores existentes foram substituídos por técnicas mais sensíveis, e a novidade neste período foi o surgimento de fontes de luz laser que também foram empregadas para a geração do sinal fotoacústico (Patel, 1978).
Enfim, o primeiro trabalho sobre a PAS foi apresentado por Kerr e Atwood em 1968 (Kerr e Atwood, 1968). Neste trabalho os autores identificaram CO$_2$ em mistura de CO$_2$ + N$_2$. Em 1973 Rosencwaig desenvolveu as bases teóricas para descrever o sinal fotoacústico, o que permitiu que a PAS fosse empregada como técnica quantitativa para o estudo das propriedades ópticas e térmicas das amostras, inclusive para os materiais sólido (Rosenwaig, 1973). No modelo desenvolvido, Rosencwaig tinha como hipótese que o mecanismo básico responsável pela geração do sinal fotoacústico era o fluxo periódico de calor entre a superfície da amostra e o gás contido na célula fotoacústica. Em 1974, Max e Rosengren construíram uma célula de gás fotoacústica ressonante para medir pequenas absorções gasosas (Max e Rosengren, 1974). Estendendo o campo de aplicação do método, Nordal e Kanstad publicaram em 1977, três trabalhos sobre a aplicação do método fotoacústico no estudo de materiais sólidos (Nordal e Kanstad, 1977). Suas pesquisas se estendiam desde o ultravioleta, passando pelo visível e infravermelho próximo, até o infravermelho médio.

Na sequência do desenvolvimento da PAS, Busse e Bullemer obtiveram, em 1978, o espectro de absorção infravermelho médio para o vapor de metanol (Busse e Bullemer, 1978). Eles utilizaram um espectrofotômetro infravermelho por transformada de Fourier comercial e uma célula de absorção gasosa ajustada com um microfone. Seus resultados foram confrontados com os obtidos pela espectroscopia óptica convencional de transmissão dando uma boa concordância entre os métodos. Por este motivo muitos o consideram como o primeiro trabalho sobre PAS.

Após estes trabalhos pioneiros, muitos outros foram publicados em periódicos de grande prestígio internacional. Até 2002, pouco mais de 600 artigos haviam sido publicados sobre as diversas aplicações da PAS em diferentes materiais sólidos, líquidos e gasosos (Michaelian, 2003). Para se ter uma ideia da diversidade de possíveis aplicações
da PAS, podemos citar: detecção de microorganismos em superfície de frutas (Irudayaraj et al., 1998); análise de gorduras em queijos (Belton et al., 1988); proteínas em chocolates (Letzelter et al., 1995); e determinação quantitativa da composição de ervilhas (Gordon et al., 1997). Sua aplicação se estende desde o campo da física, passando também pela Química, Biologia, Medicina e Engenharia. Isto porque esta técnica possui algumas vantagens sobre a espectroscopia óptica convencional (transmissão, reflexão e espalhamento). Uma destas vantagens é que a PAS é uma medida direta da absorção (mede apenas a radiação absorvida que relaxa na forma de calor), de forma que as porções de luz transmitida, refletida ou espalhada não interferem nas medidas. Assim, a PAS aplica-se ao estudo de materiais opacos, pouco absorvedores, géis, na forma de pó ou amorfos, que são materiais onde a espectroscopia óptica convencional não é adequada.

A espectroscopia com Transformada de Fourier foi inicialmente desenvolvida por astrônomos no início dos anos 50 para estudar os espectros infravermelhos das estrelas distantes, pois somente o uso dessa técnica poderia isolar do ruído ambiental os sinais muito fracos dessas fontes (Skoog et al., 2002). Esse método baseia-se no fato de que a relação entre a distribuição da radiação incidente no interferômetro e o sinal produzido pelo detector ao receber a radiação proveniente do interferômetro são Transformadas de Fourier em função co-seno. Transformada de Fourier é um processo matemático pelo qual o interferograma (gerado pelo interferômetro) é analisado em seus componentes de frequências com suas amplitudes correspondentes (Cienfuegos e Vaitsman, 2000).

Um espectrômetro FTIR tem três componentes básicos: o interferômetro de Michelson, a fonte e o detector. O interferômetro de Michelson é utilizado para modular a radiação, é constituído de um divisor de feixes (“beamsplitter”), um espelho fixo e um espelho móvel como mostra a Figura 6 (Cienfuegos e Vaitsman, 2000). Nele, quando um feixe de radiação é incidido, ele é dividido em duas partes pelo divisor de feixes, 50% da
radiação é transmitida e 50% é refletida. Metade do feixe é direcionado para o espelho fixo e a outra parte para o espelho móvel, que introduz uma variável da diferença de caminho. Depois os dois meio-feixes são recombinados, obtém-se então um perfil do batimento se a diferença de caminho varia. Para uma frequência única tem-se uma onda senoidal com máximo quando os dois feixes estão exatamente em fase ou seja, quando ocorre uma interferência construtiva. Para uma fonte policromática, o perfil de interferência é a soma de ondas senoidais para todas as frequências presentes, ou seja, um interferograma. Este interferograma resulta do registro do sinal do detector como função da diferença de caminho entre os dois feixes. O espectro tradicional, mostrando a energia como função de frequência, pode ser obtido do interferograma por Transformada de Fourier.

Figura 6. Interferômetro de Michelson

Um interferômetro possui inúmeras vantagens sobre um método de dispersão clássico, tais como: simplicidade mecânica, pois a única parte que se move no sistema FTIR é o espelho móvel, assim, há somente um pequeno desgaste e uma alta confiabilidade
do sistema; Aumento da velocidade e sensibilidade (vantagem de Felgett), pois
diferentemente de um espectrômetro dispersivo onde as freqüências são medidas
sucessivamente, no FTIR são medidas simultaneamente, assim, um espectro completo
pode ser obtido rapidamente e a média de vários pode ser feita no mesmo tempo de uma
única medida em um dispersivo; mais energia (vantagem de Jacquinot), a abertura de
Jacquinot é localizada na entrada do interferômetro para limitar o feixe até um máximo
aceitável para a resolução escolhida, a melhora no nível de ruído não é tão eficaz para a
mesma relação de mudança de resolução nos instrumentos dispersivos onde são utilizadas
fendas; Laser interno de referência (vantagem de Connes), o laser de hélio-neônio cuja
freqüência é conhecida com exatidão e tem uma estabilidade muita boa a longo prazo, age
como referência interna num interferômetro. No FTIR o laser monitora a posição do
espelho móvel durante a varredura e também é um padrão interno de calibração do
comprimento de onda; elimina a luz espúria, como a freqüência é modulada no FTIR não
há luz espúria, a relação linear entre absorbância medida e concentração é válida mesmo
para bandas que absorvem fortemente; provoca menor aquecimento na amostra, pois ela
localiza-se afastada da fonte; bandas de emissão não aparecem no espectro, pois a radiação
de freqüências IV emitidas pela amostra não é modulada e sendo assim, não detectada;
resolução constante, ela é a mesma para todos os comprimentos de onda e continuidade do
espectro por não existirem mudanças de redes ou filtros (Cienfuegos e Vaitsman, 2000).

3. Materiais e Métodos

3.1. Material Biológico

As formigas foram coletadas a partir de colônias em ninhos subterrâneos na UEMS
Campus de Dourados (22º13’16’’S / 54º48 ’20’’W), no centro - oeste do Brasil. Abdomens
de 17 machos, 05 rainhas e 14 operárias de E. vizottoi foram extraídos para a análise.
discriminante em castas e duas colônias de cada uma das espécies *E. vizottoi* e *E. brunneum*, cada uma contendo 10 operárias, foram extraídas para a análise discriminante entre espécies. Essas amostras foram colocadas no vácuo para secar durante 48 horas, a fim de minimizar a umidade, o que poderia interferir no espectro. A FTIR - PAS foi aplicada diretamente no abdômen, porque esta é a parte do corpo onde os hidrocarbonos cuticulares estão mais concentrados, sendo também uma superfície mais regular e de fácil manuseio (Cuvillier – Hot et al., 2001).

3.2. FTIR-PAS

Os espectros foram coletados em um Espectrofotômetro Thermo-Nocolet Nexus 670 combinado com um detector Fotoacústico (MTEC-300). Para melhorar os dados o espectrofotômetro foi purgado com nitrogênio para eliminar o CO₂ e o vapor de água durante o experimento. A célula fotoacústica foi também purgada com Hélio durante toda a aquisição de espectros. Previamente à aquisição do espectro dos abdomens foi utilizada uma amostra preta de carbono como referência (“background”). O “background” reproduz a emissão do corpo negro que a fonte representa. Assim quando utilizado para normalizar os espectros coletados, eles devem ficar isentos dessas vibrações moleculares. Os espectros foram coletados entre 4000 e 400cm⁻¹, com resolução de 8cm⁻¹ e 64 medidas (“scans”) para cada amostra. Os dados foram processados com o Software Omnic fornecido pelo próprio fabricante do equipamento.

3.3. Análise de Função Discriminante

A análise de função discriminante ou análise de variáveis canônicas é utilizada para dar uma indicação da possível diferença espectral entre os materiais analisados. Ele
compara as intensidades dos picos de absorção referentes aos modos vibracionais do hidrocarbono cuticular. A idéia básica é substituir o conjunto de variáveis obtidas no espectro por uma única medida de diferença (Quinn e Keough, 2005). Para isso foram utilizados os programas Systat 10.0 e Statistica 6.0 para a análise de função discriminante nas colônias de formigas.

4. Resultados e Discussões

4.1. Distinção de castas em colônia de Formiga

Inicialmente foram coletados espectros dos abdomens de machos, rainhas e operárias de formigas *E. vizottoi* para a análise de distinção de castas em uma mesma colônia de formigas. A Figura 7, mostra os espectros obtidos para cada uma dos 5 abdomens das rainhas (curvas em preto), além do espectro médio (curva em azul) calculada somando todos os 5 espectros e dividindo-os pelo numero total deles, ou seja, 5.

O mesmo procedimento de calcular a média foi feito para os 14 espectros das operárias, e com os 17 espectros dos machos, as curvas médias de cada grupo de espectros (machos, operárias e rainhas) estão ilustradas na Figura 8. Foram identificados 13 picos na região entre 4000 e 400cm\(^{-1}\) referentes a possíveis vibrações de hidrocarbonos. O número de onda correspondente a cada pico, assim como o grupo funcional que vibra nessa região e a forma de vibração da molécula podem ser visualizados na Tabela 1.
Figura 7. Espectros individuais (pretos) e curva média (azul) obtidos para a absorção no infravermelho médio dos abdomens das rainhas da espécie *E. Vozottoi*.

Figura 8. Curva média para cada grupo de espectros de absorção no infravermelho médio dos abdomens (machos, operárias e rainhas), com indicação dos principais picos observados.
<table>
<thead>
<tr>
<th>Pico</th>
<th>Número de Onda (cm(^{-1}))</th>
<th>Grupo Funcional</th>
<th>Forma de Vibração</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>3290</td>
<td>-N-H</td>
<td>“Stretching”</td>
</tr>
<tr>
<td>(2)</td>
<td>3082</td>
<td>-N-H</td>
<td>“Overtone bending”</td>
</tr>
<tr>
<td>(3)</td>
<td>2962</td>
<td>-C-H (CH(_3))</td>
<td>“Asymmetric stretching”</td>
</tr>
<tr>
<td>(4)</td>
<td>2931</td>
<td>-C-H (CH(_2))</td>
<td>“Asymmetric stretching”</td>
</tr>
<tr>
<td>(5)</td>
<td>2877</td>
<td>-C-H (CH(_3))</td>
<td>“Symmetric stretching”</td>
</tr>
<tr>
<td>(6)</td>
<td>2634</td>
<td>-C-N and -N-H</td>
<td>“Overtone bending”</td>
</tr>
<tr>
<td>(7)</td>
<td>1651</td>
<td>-C=O</td>
<td>“Stretching”</td>
</tr>
<tr>
<td>(8)</td>
<td>1524</td>
<td>-N-H</td>
<td>“Bending”</td>
</tr>
<tr>
<td>(9)</td>
<td>1450</td>
<td>C-CH(_3)</td>
<td>“Asymmetric bending Scissors”</td>
</tr>
<tr>
<td>(10)</td>
<td>1377</td>
<td>C-CH(_2)</td>
<td>“Symmetric bending”</td>
</tr>
<tr>
<td>(11)</td>
<td>1238</td>
<td>-C-N</td>
<td>“Stretching”</td>
</tr>
<tr>
<td>(12)</td>
<td>1157, 1115, 1076 e 1030</td>
<td>In-plane C-H (benzene)</td>
<td>“Bending”</td>
</tr>
<tr>
<td>(13)</td>
<td>953, 895 e 667</td>
<td>Out-of-plane C-H (benzene)</td>
<td>“Bending”</td>
</tr>
</tbody>
</table>

Tabela 1. Número de Onda, grupos funcionais e forma de vibração dos picos identificados nos espectros de absorção no infravermelho dos abdômenes das formigas.

O pico que aparece na região em torno de 2300 cm\(^{-1}\) corresponde à vibração do CO\(_2\) que não pode ser eliminado completamente durante a coleta.

Na Figura 9 estão ilustrados as formas de vibração “Bending”, “Bending Scissors” e “Stretching” indicadas na Tabela 1.

![Diagrama](Figura 9. Formas de vibração encontradas para os hidrocarbonos da cutícula dos abdômenes.)
A análise de função discriminante foi aplicada nos dados obtidos pelos espectros de absorção de cada grupo de amostra, ou seja, a análise foi feita baseada na intensidade de cada pico de cada espectro. Os picos em torno de 1524, 1651, 2634 e 2962 cm\(^{-1}\) foram os mais importantes para distinção de castas entre as formigas. A Figura 10 mostra um diagrama de dispersão dos resultados da análise de função discriminante. Este gráfico bidimensional serve para facilitar a comparação dos 13 picos selecionados nos espectros encontrados nos espectros, para cada uma das diferentes castas de formigas. Cada letra “M” na figura, por exemplo, representa a posição média no gráfico bidimensional dos 13 picos selecionados para um dos espectros das operárias. Deste mesmo modo, cada letra “O” representa um espectro para as operárias e cada letra “R” um espectro das rainhas. A Figura 10 mostra claramente que os espectros de cada casta se agrupa em diferentes posições da disposição bidimensional. Pela interpretação estatística, a separação observada pelas elipses dos machos (M), das rainhas (R) e das operárias (O) da espécie *E. vizottoi*, indica que há diferença entre o índice de hidrocarbono abdominal das diferentes castas. Esta separação pode ser explicada por 67% pela primeira raiz canônica e por 33% pela segunda raiz, ou seja, as duas raízes contém 100% da variabilidade das castas de formigas em uma colônia.
4.2. Distinção de Espécies de Formigas

Para a discriminação de espécies de formigas foram coletados espectros de absorção do abdômen de operárias de formigas das espécies *E. vizottoi* e *E. brunneum*. O mesmo procedimento descrito anteriormente foi utilizado para esta análise. A Figura 11 mostra a curva média obtida para as duas colônias de ambas as espécies. Os grupos funcionais entre 4000 e 400 cm\(^{-1}\) que estão relacionados com os hidrocarbonos cuticulares são os mesmo apresentado na Tabela 1.
Figura 11. Curva média dos espectros de absorção no infravermelho dos abdomens das colônias da espécie *E. Vizottoi*, e curva média dos espectros de absorção no infravermelho dos abdomens das colônias da espécie *E. brunneum*.

Utilizando a análise de função discriminante obteve-se o diagrama de dispersão dos resultados para as formigas das espécies *E. brunneum* e *E. vizottoi*, que estão representados na Figura 12, na qual pode-se observar que há uma separação entre as amostras das duas colônias de *E. vizottoi* (● e ○) e as duas colônias de *E. brunneum* (■ e □), o que indica a distinção de espécies. A primeira raiz canônica explica 98,5% dos dados, sendo que as duas explicam 100%. Os picos em torno de 1157, 1450, 2634, 2877 e 2931 cm\(^{-1}\) foram os mais importantes para distinção de espécies de formigas.
Figura 12. Diagrama de dispersão dos resultados da Análise de Função Discriminante para as *E. vizottoi* e *E. brunneum*. ("canonical root": raiz canônica)

5. Conclusões

A FTIR-PAS combinada com a análise de função discriminante demonstrou ser uma técnica confiável e capaz de fornecer bons resultados tanto para a discriminação de castas de uma mesma espécie de formigas quanto para discriminação de colônias de espécies diferentes. Além do mais, diferentemente de outros métodos, as amostra não precisam de preparo, somente uma secagem para eliminar vapor d’água e CO₂ que são substâncias que podem interferir na análise. Além disso, a obtenção de espectros é rápida e de fácil realização.

Esse tipo de análise realizada para distinção de castas e de espécies de formigas não é algo simples e fácil na Biologia, de modo que essa técnica pode ser muito útil em estudos posteriores. Em outras palavras, pôde-se com esse trabalho de conclusão de curso, mostrar a potencialidade da técnica FTIR-PAS no estudo de amostras biológicas.
6. Referências Bibliográficas

